طراحی یک شبیه شبکه ی عصبی مصنوعی جهت تعیین فراسنجهای آبخوان آزاد

نویسندگان

طاهره آذری

نوذر سامانی

چکیده

در این مقاله، یک شبکه­ی عصبی مصنوعی جهت تعیین فراسنجهای آبخوان آزاد (قابلیت انتقال آبخوان، ضریب ذخیره، آبدهی ویژه و شاخص تأخیر) طراحی گردیده است. تابع چاه مربوط به آبخوانهای آزاد با روش پس انتشار خطا و به کارگیری الگوریتم بهینه سازی لونبرگ-مارکوآرت به این شبکه آموزش داده شده است. با اعمال روش تحلیل مولفه­ی اصلی بر مجموعه داده های آموزش، ساختار شبکه با آرایش (3×6×3)، صرف نظر از تعداد داده های آزمون آبکشی، ثابت گردید و بازده­ی آن بطور قابل ملاحظه ای افزایش داده شد. این شبکه با دریافت هر مجموعه داده آزمون آبکشی واقعی، مختصات نقطه انطباق بهینه را تولید می‎کند، سپس مختصات نقطه­ی انطباق با حل تحلیلی بولتون (1963) ترکیب گردیده، و مقادیر فراسنجهای آبخوان محاسبه می شوند. توانایی تعمیم و عملکرد این شبکه با 100000 مجموعه­ی داده مصنوعی ارزیابی گردید و دقت آن با استفاده از داده های دو آزمون آبکشی واقعی با روش انطباق منحنی نمونه­ی کامل مقایسه شد. شبکه­ی پیشنهادی به عنوان یک روش جایگزین ساده تر و دقیقتر نسبت به روش مرسوم انطباق منحنی نمونه­ی کامل برای محاسبه فراسنجهای آبخوان آزاد توصیه می شود.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

طراحی یک شبیه شبکه‌ی عصبی مصنوعی جهت تعیین فراسنجهای آبخوان آزاد

در این مقاله، یک شبکه­ی عصبی مصنوعی جهت تعیین فراسنجهای آبخوان آزاد (قابلیت انتقال آبخوان، ضریب ذخیره، آبدهی ویژه و شاخص تأخیر) طراحی گردیده است. تابع چاه مربوط به آبخوانهای آزاد با روش پس انتشار خطا و به کارگیری الگوریتم بهینه سازی لونبرگ-مارکوآرت به این شبکه آموزش داده شده است. با اعمال روش تحلیل مولفه­ی‌ اصلی بر مجموعه داده‌های آموزش، ساختار شبکه با آرایش (3×6×3)، صرف نظر از تعداد داده‌های آ...

متن کامل

طراحی دو شبکه عصبی مصنوعی برای تعیین متغیرهای آبخوان محبوس نشتی

در سال‌های اخیر، شبکه‌های عصبی مصنوعی (Artificial Neural Networks - ANNs) به‌عنوان جایگزین روش‌های انطباق منحنی‌تیپ (Type curve matching techniques) برای تعیین متغیرهای آبخوان استفاده می‌شوند. در این پژوهش دو شبکه عصبی مصنوعی از نوع پرسپترون چندلایه (Multilayer Perceptron Network - MLPN) برای تعیین متغیرهای آبخوان محبوس نشتی (leaky confined aquifer) طراحی شده است. نشت آب به آبخوان یا از لایه ‌ن...

متن کامل

طراحی و شبیه سازی یک الگوریتم مسیریابی در شبکه های سیّار اقتضایی مبتنی بر شبکه های عصبی مصنوعی

چکیده یکی از انواع شبکههای بی سیم که در سالهای اخیر بسیار مورد توجه قرار گرفته اند، شبکههای اقتضایی سیّار است که از تعدادی گره متحرک تشکیل شده است. متغیّر بودن موقعیت نسبی گرههای تشکیل دهنده، نیاز به الگوریتم مسیریابی چابکی دارد که بتواند تحّرک گرهها را مدیریت نموده و بستههای انتقال یافته را به طرز صحیحی به مقصد برساند به طوری که هیچ یک از دو طرف ارتباط از وجود تحّرک در گرههای شبکه مطلع نشوند. ای...

متن کامل

روندیابی سیل رودها با بهره وری از شبیه های شبکه ی عصبی مصنوعی تکاملی

یکی از روش‌های پیش‌بینی سیل در رودخانه‌ها به منظور مدیریت و کنترل سیل در آن، روندیابی سیل می‌باشد. امروزه تکنیک جدید استفاده از مدل شبکه‌های عصبی مصنوعی تکاملی(EANN) که مبتنی بر هوش مصنوعی می‌باشد، کاربرد گسترده‌ای در زمینه‌های مختلف علمی به‌ویژه مهندسی آب پیدا کرده است. در این تحقیق به روندیابی سیل در رودخانه کارون، بازه اهواز- فارسیات، با استفاده از مدل‌های شبکه عصبی مصنوعی تکاملی پیش رونده (...

متن کامل

کاربرد شبکه عصبی مصنوعی جهت ارزیابی بیماری عروق کرونری قلب

Background and purpose: Since the human health is an essential issue in medical sciences, accurate predicting the individual's disease status is of great importance. Therefore, predicting with models minimum error and maximum certainty should be used. This study used artificial neural network model for predicting coronary artery disease (CAD) because it is more precise Comared to after models. ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
مهندسی منابع آب

جلد ۹، شماره ۲۸، صفحات ۱-۱۸

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023